regenerative medicine | Stem Cells Course

Tag Archives for " regenerative medicine "

How much does exosome therapy cost?

Exosome therapy is the new buzz in the regenerative medicine industry because of how it can repair and regenerate your cells and tissues.

Exosome therapy is safer compared to other cellular therapy because it’s a cell-free therapy with no risk of rejection.

Exosome therapy will be beneficial to you if you’re dealing with conditions such as sport injuries, tissue regeneration,  hair loss, erectile dysfunction, chronic pain and so many other applications . 

In this article, you’ll be learning the cost of exosome therapy and how you can benefit from exosome therapy.

How the cost of exosome therapy is determined

All cells produce exosomes, which are microvesicles that contain biochemical and genetic information. 

Hence, the cost of an exosome product (used in exosome therapy) will depend on what type of cell line (raw tissue source) used to extract the exosomes.

The first factor to determine the cost of an exosome product depends on the quality of the tissue source.

The most commonly used tissue types are cord blood, amniotic fluid and mesenchymal cell cultures.

Exosomes derived from mesenchymal cell cultures are the most difficult to obtain but offer the greatest therapeutic potential.

How much does exosome therapy cost?

The average cost of exosome therapy is $4,900, but the price can be anything from $3,500 – $6,500.

It’s also important to note that the price depends on your specific needs and your treatment plan, as decided by the doctor.

The doctor will schedule a consultation with you to determine your personalized treatment plan.

The exosome therapy can either be given as an IV infusion or as localized injections, depending on the purpose of the therapy.

Exosomes are very useful to revitalize, rejuvenate, restore, and reduce inflammations in the body.

Here are some ways you can benefit from exosome therapy

Hair loss therapy: If you’re in the early stages of hair loss, with exosome therapy you can regenerate your hair whether you’re a man or woman. After exosome therapy, you’ll start seeing new hair growth in as little as two to three months with very significant results showing 6 months or 1 year later.

Chronic pain: In case you’re experiencing chronic pain due to degenerative conditions such as arthritis, exosomes can help to subdue the pain by regenerating the cells and helping the body work better.

Degenerative conditions: If you’re struggling with degenerative medical conditions such as osteoarthritis and musculoskeletal injuries, exosome therapy can help your body repair the damage done to your cells by these conditions, prevent them from getting better, and help you to feel better.

Skin therapy: exosome therapy can reduce inflammation in the skin by improving the strength and elasticity of the skin.

Anti-aging: if you would like to retain your youthful glow, exosome therapy can make you feel young again by rejuvenating your skin due to its ability to reverse the cells dying due to aging.

Where can you get exosome therapy?

Cellular hope institutes provide exosome therapy for patients looking for better outcomes for various conditions.

The exosomes used at Cellular Hope Institute are obtained from umbilical cord tissue that is discarded after a new birth , which means these Exosomes have not been exposed to any contaminating or toxic agent because our cells are as healthy as our body. This gives it a higher capacity to regenerate your cells and tissues.

Culture Expanded MSCs

Mesenchymal Stem Cells (MSCs) are the most commonly used cells in stem cell therapy and regenerative medicine, due to their high and multi-potency. Mesenchymal Stem Cells (MSCs) can be isolated from different tissues in the body.

In this article, you’ll be learning about culture-expanded MSCs, how MSCs can be expanded, The potency of MSCs and the type of cells they can differentiate into.

What are culture expanded Mesenchymal Stem cells?

Mesenchymal stem cells are high potent cells used for cellular therapy and isolated from different parts of the body. Mesenchymal stem cells can be used to improve the patient outcome in diseases and conditions such as autoimmune diseases, degenerative diseases, nerve damage, diabetes mellitus, bone problems etc.

For every patient, millions of mesenchymal stem cells are needed and the exact amount varies according to disease, route of administration, administration frequency, weight, and age of patient.

Mesenchymal stem cells are expanded in a culture media, on a large scale in order to obtain the required quantity of cells needed for cellular therapy.

Culture expanded MSCs: How does it work?

Expanding Mesenchymal stem cells in a media involves step by step process of isolation and expansion.

Mesenchymal Stem Cells Isolation

Mesenchymal stem cells can be isolated from different tissues in the human body such as adipose tissues, dental pulp, human bone marrow, umbilical cord tissue, umbilical cord blood, peripheral blood and synovium.

Mesenchymal stem cells are expanded in culture to increase their yield and amplify their desired functions and potency.

Although the population of Mesenchymal Stem Cells obtained will vary from donor to donor, here are some steps to follow:

· Acquire fresh tissue extracts in strictly aseptic conditions, to maintain purity.

· To remove any cell clusters, you have to filter the cell suspension with a 70-mm filter mesh

· Use a centrifuge to roll the cells for about 5 minutes at 500g

·  Suspend the cells again the cells to measure the cell viability and yield using Trypan blue exclusion

· Use in T75 culture dishes to culture the cells in 10 mL of complete MSC medium at a density of 25 × 106 cells/mL. You can then go on to Incubate the plates at 37 °C with 5% CO2 in a humidified chamber without any interruption.

· When it’s past 3 h, remove the non-adherent cells that accumulate on the surface of the dish by changing the medium and replacing it with 10 mL fresh complete medium.

·  After an additional 8 h of culture, add 10ml fresh complete medium as a replacement for the existing medium. You’ll have to repeat this step every 8 h for up to 72 h of initial culture.

· Cells can be frozen in MSC growth media plus 10% DMSO (D2650) at a density of 2X106 cells/vial.

Expansion of Mesenchymal Stem Cells in a culture media

Culture expanded mesenchymal cells undergo various stages from the preparation of the culture plate, thawing of Mesenchymal stem cells, and the actual expansion of Mesenchymal stem cells.

The reason behind the cultural expansion of Mesenchymal stem cells is to get them to differentiate into other cell types such as osteoblast, adipocyte, and mesenchymal stromal cells.

In preparation, to expand MSCs in a culture media, you need a culture ware. You can get one plastic or glassware plate and coat it with a sufficient amount of 0.1% gelatin. Don’t forget to aspirate the gelatin solution from the coated plate or flask before you use it.

The next step involves the thawing of the Mesenchymal stem cells, and here are a few steps for you to follow:

After the recommended culture medium and coated culture ware is ready and on standby, remove the vial of Mesenchymal Stem Cells from liquid nitrogen and incubate in a 37C water bath and pay close attention to it, until all the cells are completely thawed. The extent of completely thawed frozen cells and how fast, are what determines the cell viability.

Once the cells have thawed completely, take steps to avoid contamination by disinfecting the walls with 70% ethanol, before you proceed to the next step.

Place the cells in a hood, and carefully transfer the cells to a sterile tube with a pipette (1 or 2ml pipette), Do this in such a way to prevent bubbles.

Then, add drops of Mesenchymal Stem cell expansion medium that have been pre-warmed to 37C to the tube containing the Mesenchymal stem cells.

Be careful to take your time when adding the medium to avoid osmotic shock which could lead to decreased viability.

Proceed to mix the suspension slowly by pipetting up and down two times while avoiding any bubbles.

Place the tube in a centrifuge and centrifuge the tube at 300 x g for 2-3 minutes to roll the cells, and you should not vortex the cells.

After this, then decant as much of the supernatant as possible. These steps are necessary to remove residual cryopreservative (DMSO).

Suspend the cells in a total volume of 10 mL of Mesenchymal Stem Cell Expansion Medium again or any alternative of choice, pre-warmed to 37 °C, containing freshly added 8 ng/mL FGF-2 (F0291).

The next step involves placing the cell suspension onto a 10-cm tissue culture plate or a T75 tissue culture flask.

Maintain the cells in a humidified incubator at 37 °C  with 5% CO2.

The next day, exchange the medium with fresh Mesenchymal Stem Cell Expansion Medium (pre-warmed to 37 °C) containing 8 ng/mL FGF-2*. Replace with fresh medium containing FGF-2 every two to three days thereafter.

Isolate the cells when they are approximately 80% confluent, using Trypsin-EDTA and passaged further or frozen for later use.

Expansion of Mesenchymal Stem Cells

Once the cells are actively proliferating and have reached a confluence of approximately 80% (before 100%), you should subculture the cells.

Then remove the medium from the 10-cm tissue culture plate containing the confluent layer of human mesenchymal stem cells, carefully and apply 3-5 mL of Trypsin-EDTA Solution, before proceeding to incubate in a 37 °C incubator for 3-5 minutes.

Crosscheck the culture to see if all the cells are completely detached. Then, add 5 mL Mesenchymal Stem Cell Expansion Medium to the plate.

Swirl the plate mildly to mix the cell suspension. Transfer the separated/isolated cells to a 15 mL conical tube.

Centrifuge the tube at 300 x g for 3-5 minutes to pellet the cells.

Throw the supernatant away and apply 2 mL Mesenchymal Stem Cell Expansion Medium (pre-warmed to 37 °C) containing 8 ng/mL FGF-2 to the conical tube and completely suspend the cells again. Remember not to vortex the cells.

Then, use a hemocytometer to count the number of cells.

Plate the cells at a density of 5,000-6,000 cells per cm2 into the appropriate flasks, plates, or wells in a Mesenchymal Stem Cell Expansion Medium containing 8 ng/mL FGF-2.

Cells can be frozen in MSC growth media plus 10% DMSO (D2650) at a density of 2X106 cells/vial.

Functions of Culture Expanded MSCs

Mesenchymal stem cells are required to be expanded in order for them to be used clinically for therapeutic purposes.

The culture expanded MSCs can be induced to differentiate into adipocytes, osteocytes, hepatocytes, chondrocytes, tenocytes and cardiomyocytes.

Because of its potential to differentiate into different kinds of cells in the body, it can be used to manage liver problems, heart problems, joint and bone problems etc.

Mesenchymal stem cells are also used in tissue regeneration and modulation of the immune system. They possess anti apoptotic, angiogenic, anti fibrotic, and anti-oxidative properties.

However, the quantity of MSCs isolated from body tissues is not enough for clinical and therapeutic applications.

This is why MSCs are expanded in culture to increase their yield for desired therapeutic effect.

Why cellular therapies have become a standard in clinics that are betting on biological medicine

Cellular therapy is fast becoming a standard therapy in many regenerative clinics today.  Many doctors are no longer questioning the safety and effectiveness of stem cell therapy. This is because various stem cell studies are already describing the benefits of stem cells for patients who are living with chronic and autoimmune health conditions.

This article will be talking about why stem cell therapy have become a standard therapy in clinics, the paracrine effect of stem cells, and other reasons why doctors are adopting stem cells in their clinics.

Benefits of stem cell therapy

Stem cell therapy is an important innovation in medicine because of its regenerative power in the human body. Most disease states are characterized by damaged cells, tissues and organs, which is where stem cell therapy comes in. In stem cell therapy, stem cells are administered into the human body and it replaces the cells damaged by disease or health disorders.

Stem cell research has revealed two major ways of using stem cells to rebuild defective and damaged cells. One of these ways can be seen in procedures like bone marrow transplant, where stem cells are used to replace the damaged cells by engraving, and they then differentiate into the proper cell type. Another mechanism relies on the paracrine effect of stem cells. This procedure of stem cell therapy involves using stem cells isolated from a donor to stimulate the patient’s cells to repair damaged tissues.

Additionally, unlike traditional therapy, stem cells have a wide application. Stem cell therapy is used to manage various degenerative diseases, autoimmune disorders, birth defects, and the research is still ongoing for so many other health conditions where stem cells have shown potential.

Also, there is currently a high demand for aesthetic medicine. Stem cell therapy is a proven alternative to other forms of cosmetology such as plastic surgery. Hence, dermatologists are turning to stem cell therapy to administer anti-aging procedures, skin rejuvenation, hair therapy, micro-needling etc.

The Paracrine effect of stem cells

The paracrine effect of stem cells is one of the most outstanding effects of stem cells. It involves using donor cells to stimulate endogenous repair by harnessing the regenerative power of the human body. It is a mechanism of tissue regeneration that has created new possibilities for managing various conditions using stem cell therapy.

The cells that trigger a paracrine response are; mesenchymal cells, umbilical cord blood, umbilical cord tissue, adipose (fat) tissue and blood cells from a donor’s bone marrow.

The paracrine effect occurs when the donor’s cells send the damaged or defective cells signals to induce self regeneration and repair by secreting some factors and proteins. One of the mechanism by which this paracrine effect is initiated, involves the secretion of cytokines and regulatory proteins by the damaged patient’s cells, these cytokines and proteins act as mediators to stimulate an immune response that attracts the donor cells, this causes the donor cells to release proteins and factors that stimulate the patient’s cells to promote cell proliferation, increase vascularization and blood flow to the areas that needs to heal, while reducing inflammation.

Moreover, research has shown that the paracrine effect of stem cells prevents damaged and diseased cells from dying. They are also therapeutically useful in autoimmune diseases and preventing transplant rejection due to the immune suppression effect they have.

Is stem cell therapy effective?

Doctors are always looking for ways to provide the best possible treatment to their patients, and that is why many clinics are embracing stem cell therapy as a standard, due to its many advantages.

Stem cell therapy is one of the most effective and safest therapy patients can receive, when compared to other existing treatment options.  Stem cell therapy is used in promoting patient outcomes in a lot of disease conditions that were previously poorly treated by other alternatives.

Again, as new potentials and ways of applying stem cells are being discovered, doctors are beginning to maximize these benefits in their clinics. Some conditions that are currently treated by stem cells include autoimmune conditions, immunotherapy Car-T cells, chronic obstructive pulmonary disease, neurodegenerative conditions, osteoarthritis, spinal cord injury, aesthetics/anti-aging, sports medicine, autism and multiple sclerosis.

Another reason clinics are adopting stem cell therapy as a standard therapy is because it is easy to administer. A lot of machines such as GCELL {Insert link} which makes the harvesting and processing of stem cells easy and fast, have made the procedures easily adaptable by doctors.

Furthermore, stem cell therapy reduces the treatment and recovery time associated with surgical procedures and other treatment options. This alone is a big factor in why stem cells are becoming a standard therapy in clinics.

Therapeutic uses of stem cells vs traditional medicine

Existing stem cell research has shown how the regenerative effect of stem cells is defining the future of medicine. The major advantage of stem cell therapy over conventional medication-based therapy is its safety. Stem cell therapy is aimed at treating the cause of the disease while traditional medicine targets the symptoms.

 Another problem with traditional medical therapy is that it introduces another problem while trying to solve the existing one. As a doctor, you always run the risk of causing harm with each prescription because of various adverse effects that could lead to major organ damage of the kidney, liver etc.  On the other hand, patients already know this and they are actively seeking better alternatives, this is why stem cell therapy is fast becoming a standard therapy in clinics.

Moreover, doctors will always be concerned about whether their patients are taking their medications or not. The burden of drug compliance and adherence associated with traditional medical therapy is not always easy to navigate. This is why effective treatment options like stem cell therapy have become a standard therapy in clinics. It only requires the patients having a procedure that repairs and restores damaged cells and tissues in the most natural way.

If you would like to become certified in regenerative medicine using stem cells and other cellular therapy, contact us.

How Cellgenic MSCs Revolutionize Regenerative Medicine

Stem Cells are revolutionizing the field of regenerative medicine, due to their intelligence. Once administered into the patient, they are able to identify and target areas of disease and damage. Adimarket’s Mesenchymal Stem Cell Product excretes growth factors, cytokines, and proteins, which all play a key role in the regeneration of tissue. Their anti-inflammatory and immunomodulatory properties mean that it is difficult for them to be rejected by the body. Additionally, they increase blood flow to the vital organs which need it the most. 

Many proprietors of  MSC products will claim that it is not necessarily important to have a high ratio of viable cells. They claim that it does not matter how many cells are ‘not viable’, or dead, so long as there is a high enough number of viable cells– however, current research has shown that this is not the case. These dead cells are detectable by the immune system, and it is believed that they can create an inflammatory response within the body at the treatment area, which would lower the effectiveness of the regenerative medicine treatments. 

This bending of the science is harmful to our industry, which is why knowledgeable purveyors put one thing above all else– consistency. Our cellular concentrations are the same throughout each batch, and we make sure that there is a high ratio of viable cells. All of our samples are independently verified by a third party laboratory, and have been selected for their phenotypic and genotypic profile, characterized for optimum growth and stability. When the proper care is taken, Mesenchymal Stem Cell products have been identified as having the highest output of growth factors and stem cell factors among the current standards of care– as well as properties of angiogenesis, immunomodulation, and the potential for endogenous repair. 

Cellgenic has been working for over a decade, constantly reinventing itself and reinforcing the products that we offer with the latest advancements in the field of regenerative medicine. We take every painstaking measure possible to ensure that the cellular samples that our customers use to treat their patients are second to none– this includes the consistent concentrations of our sample, which are the same throughout ensuring that every patient gets the same treatment. We offer the product in 10 million or 30 million live total nucleated cells, where other fabricators would have the same number of total cells. We ensure that every single product that we send out has been tested for low amounts of annexin, which is a cellular protein which serves as a marker for cell death. 

All our Mesenchymal Stem Cell products come in 1cc vials cryogenically preserved– they are shipped overnight within the United States, conveniently delivered to your door in the morning. For use, the product is passively thawed between the palms of your hands– and ready to use when your patients are. MSC 10 contains 10 million live cells and is recommended for a single joint, or a small area. However, the MSC pure pro has 30 million live cells,and can be used for larger applications, or for up to three joints in the same patient at the same time. 

If you are interested in finding out more about Cellgenic MSCs, you can send an eMail to info@stemcellsgroup.com

Stem cell treatment could offer one-end-solution to Diabetes

Insulin-producing cells grown in the lab could provide a possible cure for the age-long disease (diabetes).

Type 1 diabetes is an auto¬immune disease that wipes out insulin-producing pancreatic beta cells from the body and raises blood glucose to dangerously high levels. These high levels of Blood sugar level can be even fatal. Patients are being administered insulin and given other medications to maintain blood sugar level. To those who cannot maintain their blood sugar level, they are given beta-cell transplants but to tolerate beta cell transplants; patients have to take immunosuppressive drugs as well.

A report by a research group at Harvard University tells us that they used insulin-producing cells derived from human embryonic stem cells (ESCs) and induced pluripotent stem cells to lower blood glucose levels in mice. Nowadays, many laboratories are getting rapid progress in human stem cell technology to develop those cells that are functionally equivalent to beta-cells and the other pancreatic cell types. Other groups are developing novel biomaterials to encapsulate such cells and protect them against the immune system without the need for immunosuppressant.

Major pharmaceutical companies and life sciences venture capital firms have invested more than $100 million in each of the three most prominent biotechnological industries to bring such treatments into clinical use:

  • Cambridge
  • Massachusetts–based companies Semma Therapeutics 
  • Sigilon Therapeutics, and ViaCyte of San Diego

Researchers of UC San Francisco have transformed human stem cells into mature insulin-producing cells for the first time, a breakthrough in the effort to develop a cure for type-1 (T1) Diabetes. Replacing these cells, which are lost in patients with T1 diabetes, has long been a dream of regenerative medicine, but until now scientists had not been able to find out how to produce cells in a lab dish that work as they do in healthy adults.

What is T1 diabetes?

T1 diabetes is an autoimmune disorder that destroys the insulin-producing beta cells of the pancreas, typically in childhood. Without insulin’s ability to regulate glucose levels in the blood, spikes in blood sugar can cause severe organ damage and eventually death. The condition can be managed by taking regular shots of insulin with meals. However, people with type 1 diabetes still often experience serious health consequences like kidney failure, heart disease and stroke. Patients facing life-threatening complications of their condition may be eligible for a pancreas transplant from a deceased donor, but these are rare, and they are supposed to wait a long time.

Researchers have just made a breakthrough that might one day make these technologies obsolete, by transforming human stem cells into functional insulin-producing cells (also known as beta cells) – at least in mice.

“We can now generate insulin-producing cells that look and act a lot like the pancreatic beta cells you and I have in our bodies,” explains one of the team, Matthias Hebrok from the University of California San Francisco (UCSF).

“This is a critical step towards our goal of creating cells that could be transplanted into patients with diabetes.”

Type-1 diabetes is characterized by a loss of insulin due to the immune system destroying cells in the pancreas – hence, type 1 diabetics need to introduce their insulin manually. Although this is a pretty good system, it’s not perfect.

Making insulin-producing cells from stem cells

Diabetes can be cured through an entire pancreas transplant or the transplantation of donor cells that produce insulin, but both of these options are limited because they rely on deceased donors. Scientists had already succeeded in turning stem cells into beta cells, but those cells remained stuck at an early stage in their maturity. That meant they weren’t responsive to blood glucose and weren’t able to secrete insulin in the right way.

Scientists at the University of California San Francisco made a breakthrough in the effort to cure diabetes mellitus type 1.

For the first time, researchers transformed human stem cells into mature insulin-producing cells, which could replace those lost in patients with the autoimmune. There is currently no known way to prevent type-1 (T1) diabetes, which destroys insulin production in the pancreas, limits glucose regulation, and results in high blood sugar levels. The condition can be managed with regular shots of insulin, but people with the disease often experience serious health complications like kidney failure, heart disease, and stroke.

“We can now generate insulin-producing cells that look and act a lot like the pancreatic beta cells you and I have in our bodies,” according to Matthias Hebrok, senior author of a study published last week in the journal Nature Cell Biology.

“This is a critical step toward our goal of creating cells that could be transplanted into patients with diabetes,” Hebrok, director of the UCSF Diabetes Center, said in a statement.

Islets of Langerhans are groupings of cells that contain healthy beta cells, among others. As beta cells develop, they have to separate physically from the pancreas to form these islets.

The team artificially separated the pancreatic stem cells and regrouped them into these islet clusters. When they did this, the cells matured rapidly and become responsive to blood sugar. In fact, the islet clusters developed in ways “never before seen” in a lab. After producing these mature cells, the team transplanted them into mice. Within days, the cells were producing insulin similar to the islets in the mice. While the study has been successful in mice, it still needs to go through more rigorous testing to see if it would work for humans as well. But the research is up-and-coming. “We can now generate insulin-producing cells that look and act a lot like the pancreatic beta cells you and I have in our bodies. This is a critical step towards our goal of creating cells that could be transplanted into patients with diabetes,” He said.

“We’re finally able to move forward on several different fronts that were previously closed to us,” he added. “The possibilities seem endless.”

Basic research keeps elucidating new aspects of beta cells; there seem to be several subtypes, so the gold standard for duplicating the cells is not entirely clear. Today, however, there is “a handful of groups in the world that can generate a cell that looks like a beta cell,” says Hebrok, who currently acts as scientific advisor to Semma and Sigilon, and has previously advised ViaCyte. “Certainly, companies have convinced themselves that what they have achieved is good enough to go into patients.”

The stem cell reprogramming methods that the three companies use to prompt cell differentiation create a mixture of islet cells. Beta cells sit in pancreatic islets of Langerhans alongside other types of endocrine cells. Alpha cells, for example, churn out glucagon, a hormone that stimulates the conversion of glycogen into glucose in the liver and raises blood sugar. Although the companies agree on the positive potential of islet cell mixtures, they take different approaches to developing and differentiating their cells. Semma, which was launched in 2014 to commercialize the Harvard group’s work and counts Novartis among its backers, describes its cells as fully mature, meaning that they are wholly differentiated into beta or other cells before transplantation. “Our cells are virtually indistinguishable from the ones you would isolate from donors,” says Semma chief executive officer BastianoSanna

To get around the donor problem, researchers, including the team at UCSF has been working on nudging stem cells into becoming fully-functional pancreatic beta cells for the last few years. Still, there have been some issues in getting them all the way there.

“The cells we and others were producing were getting stuck at an immature stage where they weren’t able to respond adequately to blood glucose and secrete insulin properly,” Hebrok said.

“It has been a major bottleneck for the field.” 

“We’re finally able to move forward on a number of different fronts that were previously closed to us,” Hebrok added. “The possibilities seem endless.” 

Regardless of starting cell type, the companies say they are ready to churn out their cells in large numbers. Semma, for example, can make more islet cells in a month than can be isolated from donors in a year in the United States, Sanna says, and the company’s “pristine” cells should perform better than donor islets, which are battered by the aggressive techniques required for their isolation.

As these products, some of which have already entered clinical trials, move toward commercialization, regulatory agencies such as the US Food and Drug Administration (FDA) and the  European Medicines Agency have expressed concern about the plasticity of the reprogrammed cells. All three firms subject their cells to rigorous safety testing to ensure that they don’t turn tumorigenic. Before successful trials, companies won’t know the dose of beta cells required for a functional cure, or how long such “cures” will last before needing to be boosted. There’ll be commercial challenges, too: while the companies are investing heavily to develop suitable industrial processes, all acknowledge that no organization has yet manufactured cell therapies in commercial volumes.

Nevertheless, there’s growing confidence throughout the field that these problems will be solved, and soon. “We have the islet cells now,” says Alice Tomei, a biomedical engineer at the University of Miami who directs DRI’s Islet Immuno-engineering Laboratory.

“These stem cell companies are working hard to try to get FDA clearance on the cells.”

Protecting stem cell therapies from the immune system

Whatever the type of cell being used, another major challenge is delivering cells to the patient in a package that guards against immune attack while keeping cells fully functional. Companies are pursuing two main strategies: 

  • Microencapsulation, where cells are immobilized individually or as small clusters, in tiny blobs of a biocompatible gel.
  • Macroencapsulation, in which greater numbers of cells are put into a much larger, implantable device.

ViaCyte, which recently partnered with Johnson & Johnson, launched its first clinical trial in 2014. The trial involved a micro-encapsulation approach that packaged up the company’s partially differentiated, ESC-derived cells into a flat device called the PEC-Encapsulation. About the size of a Band-Aid, the device is implanted under the skin, where the body forms blood vessels around it. “It has a semipermeable membrane that allows the free flow of oxygen, nutrients, and glucose,” says ViaCyte’s chief executive officer, Paul Laikind. “And even proteins like insulin and glucagon can move back and forth across that membrane, but cells cannot.”

The trial showed that the device was safe, well-tolerated, and protected from the adaptive immune system—and that some cells differentiated into working islet cells. But most cells didn’t engraft effectively because a “foreign body response,” a variant of wound healing, clogged the PEC-Encap’s membrane and prevented vascularization. ViaCyte stopped the trial and partnered with W. L. Gore & Associates, the maker of Gore-Tex, to engineer a new membrane. “With this new membrane,” says Laikind, “we’re not eliminating that foreign body response, but we’re overcoming it in such a way that allows vascularization to take place.” The company expects to resume the trial in the second half of this year, provided it receives the green light from the FDA.

Semma is also developing macro¬-encapsulation methods, including a very thin device that in prototype form is about the size of a silver dollar coin. The device is “deceptively simple, but it allows us to put [in] a fully curative dose of islets,” Sanna says.

Semma is also investigating microencapsulation alternatives. At the same time, the company is advancing toward clinical trials using established transplantation techniques to administer donated cadaver cells to high-risk patients who find it particularly difficult to control their blood glucose levels. These cells are infused via the portal vein into the liver, and patients take immunosuppressive drugs to prevent rejection.

Sigilon is working on its microencapsulation technology. Launched in 2016 on the back of work by the labs of Robert Langer and Daniel Anderson at MIT, the company has created 1.5-millimeter gel-based spheres that can hold between 5,000 and 30,000 cells (Nat Med, 22:306–11, 2016). Each sphere is like a balloon, with the outside chemically modified to provide immune-protection, says Sigilon chief executive officer Rogerio Vivaldi. “The inside of the balloon is full of a gel that creates almost a kind of a matrix net where the cells reside.”

In 2018, shortly after partnering with Eli Lilly, Sigilon and collaborators published research showing that islet cells that were encapsulated in gel spheres and transplanted into macaques remained functional for four months. The company has not disclosed a time frame for a type 1 diabetes trial “but we’re moving pretty quickly,” says chief scientific officer David Moller.

Conclusion

To conclude, all three firms hope to extend their work to treat some of the 400 million people worldwide with type 2 diabetes, many of them eventually benefit from insulin injections. The recent endorsements from big Pharmaceutical underline the real progress in beta-cell transplants, says Aaron Kowalski, a molecular geneticist and chief executive officer at JDRF, a foundation based in New York that has funded research at ViaCyte and academic labs whose work has been tapped by Semma and Sigilon. “These companies all realize that if they don’t do it, somebody else will. It’s hard to predict exactly when, but somebody is going to make this work.”

2 ISSCA introduces new stem cell training courses web page for regenerative medicine practitioners

 
 
 
 
 
 
 
ISSCA has launched a new stem cell training web page designed to offer free information and resources to help physicians choose a training program best suited to their unique needs.
MIAMI, June 26, 2018—The International Society for Stem Cell Application (ISSCA) has launched a new stem cell training course web page, coordinated by Global Stem Cells Group affiliate Stem Cell Training, designed to help physicians access free information and resources on the newest instruction and training options in regenerative medicine training.
The new web page is designed to help physicians interested in adding stem cell procedures to grow their medical practice or enhance career advancement opportunities find stem cell training program options to enable them to find a training program best suited to their individual needs.  ISSCA’s variety of stem cell training opportunities include:
Online stem cell training course, ISSCA’s cutting-edge online course that teaches physicians everything they need to know to add adult stem cell-based procedures to their existing practice, or confidently transition to a regenerative medicine center. Offering the convenience of training from a home or office computer, this course prepares physicians in all the theoretical and practical knowledge needed to effectively and expertly administer stem cell therapies to patients, including harvesting and isolating stem cells.
ISSCA’s online training positions physicians to open their own stem cell center practice and join ISSCA’s expansive network. Successful completion of the online training course allows physicians to immediately begin offering cutting-edge regenerative medicine procedures to patients, establish themselves as experts in their fields, and enjoy the benefits of the growing regenerative medicine industry.
Hands-on stem cell certification training courses, ISCCA’s intensive, two-day hands-on training course scheduled at various international locations provides attending physicians with expert instruction on autologous stem cell therapies in the field of regenerative medicine. Participants learn techniques and protocols for harvesting and isolating stem and regenerative cells from adipose tissue, bone marrow, and /or peripheral blood from live patients and administering the cells back to the patient
Course curriculum consists of comprehensive theoretical lectures and home study education, and two days of didactic and clinical experience. One day of post-educational on-site clinical assistance is also available upon request.
Onsite training, ISSCA’s personalized, hands-on, onsite stem cell training brings stem cell specialists to your practice or clinic, anywhere in the world, to provide one-on-one training tailored to your practice’s specific requirements—saving time and money. The onsite training program offers participants a unique opportunity to grow their practice and achieve their specific practice goals by offering practice-specific regenerative medicine treatments to patients in their medical office or clinical setting.
The onsite training course provides participating practices with personalized theoretical information and hands-on training along with ongoing support for their clinical practice. Applications and protocols are provided by a Stem Cells Training faculty member with extensive experience in laboratory and clinical practice.

ISSCA’s onsite training specifications include:
1. Equipment and supply delivery. The Stem Cell Training team
delivers and sets up all equipment and supplies necessary for the            training session to take place and will leave the physician’s team
fully qualified to start its own stem cell treatment practice.

2. Expert trainers. ISSCA’s onsite stem cell training course takes a highly visual and interactive approach. Expert trainers teach and supervise the hands-on process using live patients and different protocols for the extraction, isolation, and application of PRP, adipose- and bone marrow-derived stem cells.
3. Multimedia access. ISSCA provides physicians participating in its onsite training program access to its library of high-resolution, step-by-step procedure videos and ongoing online and telephone support for clinical equipment, inquiries or concerns for the practice’s future use and reference.
Fellowship in cell therapy and tissue engineering. Recognizing the need for knowledge of stem cell protocols among physicians and healthcare professionals, ISSCA and Stem Cell Training created the Fellowship of Stem Cell Therapy and Tissue Engineering program. The fellowship focuses on stem cell therapies involving the potential replacement of cells or organs that are diseased, injured, infirmed, ailing or aged
In this modular training program, a group of experienced academic scholars involved in stem cell transplantation present a series of topics covering the general principles and practices of stem cell
biology and evidence-based treatments that physicians can apply to optimize the health of their patients. Fellowship course details and objectives include:
• A detailed program offering hands-on experience in stem cell characterization and laboratory applications
• An opportunity to learn cell culture processes including plating, trypsinization, harvesting, and cryopreservation
• Gaining the ability to understand and apply quality control tests including cell count, viability, flow cytometry, endotoxin, mycoplasma, and sterility
• Learning to perform CGMP functions including clean room maintenance, gowning, and environmental monitoring
• Establishing insight on relevant applications of stem cell processing and regulations that apply to a certified facility
• Receiving the tools necessary to implement regulatory and clinical guidelines when setting up a GMP facility
• Providing participants with copies of presentations, procedural protocols, and all forms associated with a GMP facility, as well as case books and full protocols for approximately 30 indications
• Demonstrating the ability to perform clinical procedures including lipoaspirate and bone marrow isolation, and reintroduction of stem cells for various indications
The new ISSCA stem cell training web page also features an informative blog that publishes four new articles in the field of regenerative medicine weekly.
To learn more, visit the ISSCA stem cell training web page, email info@stemcellsgroup.com, or call 305-560-5337.
About ISSCA:
The International Society for Stem Cell Application (ISSCA) is a multidisciplinary community of scientists and physicians, all of whom aspire to treat diseases and lessen human suffering through advances in science, technology and the practice of regenerative medicine. ISSCA serves its members through advancements made in the specialty of regenerative medicine.
The ISSCA’s vision is to take a leadership position in promoting excellence and setting standards in the regenerative medicine fields of publication, research, education, training, and certification.
As a medical specialty, regenerative medicine standards and certifications are essential, which is why ISSCA offers certification training in cities all over the world. The goal is to encourage more physicians to practice regenerative medicine and make it available to benefit patients both nationally and globally. Incorporated under the Republic of Korea as a non-profit entity, ISSCA is focused on promoting excellence and standards in the field of regenerative medicine.
Stem cell training web page launch

Global Stem Cells Group names Mehmet Veli Karaaltın, M.D. to Advisory Board

 

 

 

 

 

 

 

(Image: Mehmet Veli Karaaltın, M.D.)

MIAMI, Jan. 18, 2018—Global Stem Cells Group CEO Benito Novas has named Mehmet Veli Karaaltın, M.D., Associate Professor of Plastic, Aesthetic, and Reconstructive Surgery, (European Board Certified), and hand surgery, head, and maxillofacial surgery specialist to the GSCG Advisory Board Faculty.

Karaaltın practices in Istanbul, Turkey.

Born in Iraq-Kirkuk in 1972, Karaaltın moved to the United States with his family, living in West Lafayette, Indiana and Los Angeles until 1988, when he moved to Istanbul.

After graduating from Istanbul University’s Cerrahpaşa English Medical Faculty, Karaaltın received a national examination from Hacettepe University in Ankara, Turkey, where he was 12th out of 25000 doctoral candidates.  In 2012, he passed and completed all ID exams required by the European Society of Plastic Surgery. He ​​is a member of the European Council of Plastic Reconstructive and Aesthetic Surgery and the International Society of Aesthetic Plastic Surgery (ISAPS).

In addition to his work in aesthetic applications, Karaaltın is also known for his work in microvascular free flaps, nerve transfers, facial surgery, and tissue transplants.

Karaaltın also practices cellular therapy and tissue regeneration for healing diabetic wounds, severe burns, and Buerger’s disease. He is one of only a few physicians in the world who offer surgical treatment for Lymphedema-Elephant Disease with microvascular lymph node transfer. In addition, Karaaltın uses

3-D technology to perform aesthetic rhinoplasty.

“It is a pleasure to welcome Dr. Karaaltın to the Global Stem Cells Group Advisory Board,” says GSCG  CEO Benito Novas. “He brings a wealth of knowledge in aesthetic regenerative medicine to the table, and we look forward to a long and productive alliance.”

To learn more, visit the Global Stem Cells Group website, email inf@stemcellsgroup.com, or call +1 305 560 5337.

About Global Stem Cells Group:

Global Stem Cells Group (GSCG) is a worldwide network that combines seven major medical corporations, each focused on furthering scientific and technological advancements to lead cutting-edge stem cell development, treatments, and training. The united efforts of GSCG’s affiliate companies provide medical practitioners with a one-stop hub for stem cell solutions that adhere to the highest medical standards.

Global stem cell’s mission is to be the largest recognized stem cell and regenerative medicine network in the world.

 

Mehmet Veli Karaaltın, M.D.

ISSCA President Daeyong Kim, Ph.D. Names Junaid Sayed, M.D. President of ISSCA’s U.S. Chapter

 

 

 

 

 

 

 

(Image: Junaid A. Syed, M.D.)

ISSCA President Daeyong Kim, Ph.D., has named Junaid Sayed, M.D. president of ISSCA’s U.S. chapter.

MIAMI, Jan. 18, 2018—International Society for Stem Cell Application (ISSCA) President Daeyong Kim, Ph.D., has named Junaid Sayed, M.D. president of ISSCA’s U.S. chapter. Sayed is Board Certified physician with extensive training in aesthetic medicine.

As president of the U.S. chapter, Sayed will represent and promote ISSCA activities the USA, including ISSCA’s Stem Cell Certification Training and Stem Cell Conference events. He will also share the latest information on regenerative medicine clinical applications with the U.S, medical community.

“We are happy to have Dr. Sayed represent ISSCA in the U.S., and as a collaborator in our efforts to introduce new clinical applications to the medical community,” says Kim. “He brings a wealth of experience and expertise to the ISSCA organization.”

To learn more about ISSCA, visit the stemcellglobal.org website, email info@stemcellsgroup.com, or call +1305 560 5337.

About ISSCA:

ISSCA 2018 training agenda

The International Society for Stem Cell Application (ISSCA) is a multidisciplinary community of scientists and physicians, all of whom aspire to treat diseases and lessen human suffering through advances in science, technology and the practice of regenerative medicine. ISSCA serves its members through advancements made to the specialty of regenerative medicine.

The ISSCA’s vision is to take a leadership position in promoting excellence and setting standards in the regenerative medicine fields of publication, research, education, training, and certification.

As a medical specialty, regenerative medicine standards and certifications are essential, which is why ISSCA offers certification training in cities all over the world. The goal is to encourage more physicians to practice regenerative medicine and make it available to benefit patients both nationally and globally.  Incorporated under the Republic of Korea as a non-profit entity, the ISSCA is focused on promoting excellence and standards in the field of regenerative medicine.

 

 

 

 

Global Stem Cells Group Subsidiary Stem Cell Center Network to open new facility in Puerto Rico

 

 

 

 

 

 

 

MIAMI, Jan. 15, 2018—Global Stem Cells Group (GSCG) subsidiary Stem Cell Center Network, the world’s largest collective support and advisory network of regenerative medicine clinics and physicians, has announced the opening a new facility in San Jose, Puerto Rico in January 2018.

Stem Cell Center Puerto Rico will provide stem cell treatments for a variety of conditions, including osteoarthritis, erectile dysfunction, and urinary incontinence.  Adimarket, also a subsidiary of GSCG, will provide Stem Cell Center Puerto Rico with state-of-the-art products and technology, such as the Integrated Stem Cell Workstation

Global Stem Cells Group CEO Benito Novas named Juan Colon, M.D. to head Stem Cell Center Puerto Rico as medical director. Colon is a urologist who has spent the past year working to help prostate cancer patients. He earned his medical degree from Recinto de Ciencias Médicas in San Juan and trained in the latest regenerative medicine protocols in December 2017 at Stem Cell Center San Jose, Costa Rica.

The Stem Cell Center Network has aggressively launched and rapidly expanded new fellowship programs, events, and other regenerative medicine events over the past five years and currently has members practicing in 25 countries.

The new San Juan center will treat patients with a variety of degenerative conditions with emphasis on osteoarthritis, according to Novas.  

For more information, visit the Stem Cell Center Network website, the Global Stem Cells Group website, email info@stemcellsgroup.com, or call +1305 560 5337.

About Global Stem Cells Group:

Global Stem Cells Group (GSCG) is a worldwide network that combines seven major medical corporations, each focused on furthering scientific and technological advancements to lead cutting-edge stem cell development, treatments, and training. The united efforts of GSCG’s affiliate companies provide medical practitioners with a one-stop hub for stem cell solutions that adhere to the highest medical standards.

Global stem cell’s mission is to be the largest recognized stem cell and regenerative medicine network in the world.

About Stem Cell Center Network:

Stem Cell Center Network, a division of Global Stem Cells Group, is an international network of medical practitioners dedicated to bringing stem cell therapies to patients worldwide.
Network physicians are experts in their fields and believe that stem cell treatments are to the future of medicine. Each Network physician is dedicated to providing the best treatments and contributing to the global store of regenerative medicine knowledge and research.

About Adimarket:

Adimarket, Inc.,
a division of the Global Stem Cells Group, is a one-stop, cost-competitive online marketplace for quality regenerative medicine equipment and supplies for physicians and healthcare professionals.

Adimarket was founded to provide practitioners the tools they need to practice regenerative medicine in a medical office setting. Motivated by a firm belief in the impact stem cell medicine can have when dispensed in a doctor’s office, Adimarket provides physicians with the tools they need to provide patients with cutting-edge treatments.

ISSCA to Conduct Regenerative Medicine Training in Mexico City Feb.9-10, 2018

 

 

 

 

 

 


ISSCA will conduct the next regenerative medicine certification training course in Mexico City, Feb. 9-10, 2018. The two-day course focuses on harvesting adipose and bone marrow stem cells from patients in a clinical environment.

MIAMI, Jan. 15, 2018—The International Society for Stem Cell Application (ISSCA) announced plans to hold its next regenerative medicine certification training course in Mexico City, Feb. 9 – 10, 2018.

The two-day, hands-on training course will focus on harvesting adipose and bone marrow stem cells from patients in a clinical environment. Qualified physicians learn skills that can be used to treat patients in their practices, and for career advancement. The course provides participating physicians with training in stem cell applications to treat a variety of conditions.

Participating physicians will also receive access to the online stem cell training course to review all content and procedures introduced in the 2-day clinical training course, patient forms and guidelines, procedure informed consent forms, didactic lectures, training booklets, and more.

ISSCA’s stem cell certification course offers hands-on, personalized training in harvesting stem cells from a live patient. ISSCA has trained more than 2,000 physicians worldwide. The course is only available to eight physicians per training, so it is important to sign up early to reserve a seat.

The ISSCA regenerative medicine training course was developed for physicians and high-level practitioners to learn techniques in harvesting and reintegrating stem cells.

Stem cell therapies continue to revolutionize the healthcare industry and help improve the quality of life for patients.

To learn more about the ISSCA certification training course and register to participate, visit the Stem Cell Training Course website, email info@stemcellsgroup.com, or call 305-560-5337.

About ISSCA:

The International Society for Stem Cell Application (ISSCA) is a multidisciplinary community of scientists and physicians, all of whom aspire to treat diseases and lessen human suffering through advances in science, technology and the practice of regenerative medicine. ISSCA serves its members through advancements made to the specialty of regenerative medicine.

The ISSCA’s vision is to take a leadership position in promoting excellence and setting standards in the regenerative medicine fields of publication, research, education, training, and certification.

As a medical specialty, regenerative medicine standards and certifications are essential, which is why ISSCA offers certification training in cities all over the world. The goal is to encourage more physicians to practice regenerative medicine and make it available to benefit patients both nationally and globally.  Incorporated under the Republic of Korea as a non-profit entity, the ISSCA is focused on promoting excellence and standards in the field of regenerative medicine.

 

 

 

 

1 2 3 4